509.443.4526

WASHINGTON | IDAHO

CONTACT

What About Snow?

One of the questions we often get about solar in the Inland Northwest is, “how can I keep snow off my array?”

Our answer: don’t bother.

In Spokane, 82% of our annual solar production comes in just five months of the year; April through August. July is a monster, producing nearly eight times more solar power than December. So why worry about a little snow on your roof array in December, when it barely produces?

Washington’s net metering law makes this all work for you, crediting your summer power surplus against your winter utility bills. With the vast difference in day length from winter to summer, net metering is the key to making solar economics work for small system owners. (Which is why you should urge your district’s state legislators to support the Solar Fairness Act right now, to strengthen our state’s net metering.)

It’s different for off-grid systems on remote mountainsides, where snow removal does count and where there is no metering at all. However, for the grid-tied systems that make up 95% of what we install, December and January are almost irrelevant. Besides, that is no time to scale your roof, and, if you have a ground-mounted system, most snow will slide off anyway.

So spend your winter weekends skiing or curled by the fire with a good book, enjoying all the power credits you built up the previous summer and looking forward to harvesting plenty more in the sunny season ahead!

Bringing Light and Power to a Peruvian Village

Just back from the Amazon Basin, Northwest Renewables manager Grant Neely reflects on his January adventure with solar nonprofit Twende to electrify the remote Peruvian indigenous village of Mushuk Llamas. 

Shapaja, Peru- The steep, two-mile hike to Mushuk Llamas is daunting but beautiful, alternating between forest switchbacks and straight shots up the slopes until views open up, and you can see the muddy Rio Huallaga far below, wending its way to the Amazon. The air is warm, moist and rich with jungle scents.

We’re carrying heavy packs. Fortunately, a boy from the village brought down a horse to help haul gear and tools — a huge relief. We struggle as we make repeated laps up the trail, lugging twenty-eight solar panels, six big 50-pound batteries, a dozen 14’ aluminum rails, plus bags and boxes of hardware, brackets, inverters, charge controllers, and other electrical components. Every piece of this village’s new solar power system must be humped up to the village. However, for the Mushuk people this is just another day hauling heavy loads up steep slopes, and many power past us in flip-flops or bare feet. They’re the strongest people I’ve met.

Mushuk Llamas turns out to be a dozen single-story wooden buildings and huts roofed with palm thatch or corrugated steel, perched in a large clearing on a less steep section of hillside with commanding views of jungled ridges extending into the distance, while at night the valleys below twinkle with the lights of tiny nearby Shapaja and more distant Terapoto, the San Martin region’s hub and airport where we flew in. However, this is officially a cloud forest habitat, and we are about to find that it often lives up to its name with frequent rain and fog.

Unlike the towns and the eco-tourism lodge we passed on our way to the trailhead, this is a world apart. At first glance, the place looks poor, with dirt-floored homes, thin livestock, and guard dogs kept to fend off predators like jungle jaguars. However, if you asked the Mushuk if they are poor they would most likely say “hell no!”. They merely know how to live well with less. They know the Internet, and how to find America on a map. Yet they are also steeped in indigenous tradition, and many speak Quechua, the ancient Andean language that predates even the Incas, and which the Spanish tried but failed to suppress for centuries. Many of the village elders have been here all their lives. It’s common to see a woman in her eighties huff past, barefoot, carrying a heavy, head-strapped backpack. Other villagers spend their days picking coffee and climbing palms for coconuts — and then offering evening physical therapy sessions to us, who haven’t done anything nearly as strenuous.

Villages like Mushuk Llamas don’t get much support from Peru’s government. Schools are few and far between, and they also have strict entry standards plus requirements such as costly uniforms and books that discourage low-income families. Also, teachers don’t make very much so there is little incentive for good teachers to stay in Peru. Therefore Internet access and the ability to do homework remotely are very important, so our electrical system work will be a huge boon to students and families here.

Once the gear is up the hill, the first order of business is digging eight one-meter-deep foundation holes where we’ll erect the array posts in concrete. How does one get concrete at the top of a mountain, you ask? Simple. Mine and make it on site! A dozen bags of cement were hauled up the trail by villagers and horses, but the sand to complete the mix now comes straight from the land — from a sandstone outcropping a kilometer away, where villagers show us how to  chisel off chunks and then pound them into sand, which we then bag and carry back to the village. It seems so easy to the Mushuk; merely making use of their resources as they always do, which impresses us even more.

Beneath the grass at the array site lies thick clay and mud, ideal for trenching. We and dozens of villagers spend an entire day digging trenches for electric lines from the array above the village twelve meters down to the community center, then another fifteen meters to the nurse’s station, then thirty meters more to the all-important soccer pitch. A great community work party by all: builders working at the array to set posts; curious newcomers to electrical work helping wire every single outlet, switch, and light socket; and even young boys swinging picks and shovels alongside us all day through the beating heat.

It rains the next few days and everything becomes a muddy mess. Still, in less than three days our gringo team and a dozen villagers have the foundations poured, the posts set, the rails up and the modules installed. After the local elders express concern about children getting into the wiring, we engage a local woodcutter to provide lumber so we can create an enclosed electrical room beneath the array. The woodcutter fells a nearby jungle tree and then, with nothing more than his chainsaw, deftly mills a whole stack of boards and posts sized for our needs. Amazing.

Two days later the electrical components are mounted in the electrical room, and wires are run in buried conduit to outlets and lights in the community center, nurse’s station and soccer field. As rain pours in warm dusk, we gather the work crew along with curious kids and women cooking our food nearby, we flip a switch and…there is light! A warm glow shines from the windows of the nurse’s station and community building, while the two floodlights we installed at the soccer field turn half of the village to daylight. A whoop goes up as villagers clap, looking back and forth at the lights, at us and at each other, agog and grinning from ear to ear.

In the gathering darkness, despite the rain, dozens come out to stroll and admire the lights as kids play soccer later than they’ve ever played in the village before.

Soon a man shows around a text he just received from a friend a few miles away in Shapaja, the nearest town with utility power: “What’s going on up there? We see lights but our electricity is out!” Yes, down in “civilization” people were groping through darkness while up here in the hinterlands we partied under solar-and battery-powered lights!

Two days later it’s 10:00 am and time to say goodbye to this place and the people we’ve come to love. The sun is out and so are all of Mushuk Llamas’s people, to help the Apu (chief) formally thank us. Speeches are made, toasts are raised with beer and chicha (corn liquor), and each of member of our Twende team is called up to the stage, one by one, and presented with a handmade belt embroidered with our name. A small marching band has appeared from the valley below, striking up tunes we don’t know, and the party is on. Two hours later it’s time to hoist packs and stagger down the trail, returning to the outside world.

Let there be light!

All the way down the mountain we can’t help thinking that we are witnessing much more than electricity’s arrival in a remote Amazonian village. This looked like the future, and a good future at that!

An Electrical Room With A View

This is the latest report from Northwest Renewables’ solar project manager Grant Neely, who is currently loaned to U.S. nonprofit Twende Solar to bring electricity to the Peruvian village of Mushuk Llamas, in the Amazon jungle.

Mushuk Llamas, Peru – The villagers are thrilled to see us build their solar power system. However, an unanticipated concern arose: how to keep the electrical gear and DC connections out of reach of the village children, to prevent shocks and injury? Being constantly surrounded here by kids getting into all sorts of mischief, we immediately understood the worry and got to work thinking of ways to enclose the batteries, inverter, combiner, charge controller and wires beneath the array. 

“Do you have any lumber?” we asked. The village chief answered with a wave at the forest; there was plenty of lumber, he said, and, by law, only the Mushuk are allowed to cut it.

Sure enough, the next morning a Mushuk man with a big chainsaw appeared, selected a nearby tall tree, then felled and milled it on the spot, sawing long, straight boards and posts from the rich hardwood; the strongest, prettiest wood I’ve ever worked with — material you’d only see back home sculpted and polished into high-end furniture or jewelry boxes. 

“Wow,” said one solar pro. “This’ll be the world’s most expensive wiring back-board!”

Beautiful it was indeed. We added foundation and walls, and soon the child-resistant electrical shed with its power-generating roof array was finished. Everything beyond the shed would be safer, usable AC electricity, with circuits to the community center, nurses station, community kitchen, and even to two floodlights for the small village soccer field.

Almost every new and unusual solar project brings an unexpected challenge at some point. This one turned out to be a very cool learning experience for all of us!

You can support the Mushuk Llamas Project with a tax-deductible donation at twendesolar.org/grant.

On the Way to Electrify a Village in Peru

Here is the latest installment by our intrepid project manager Grant Neely, whom we loaned to Twende, a non-profit organization that brings electricity to small and developing communities across the world. Grant is now in Peru’s Amazon Basin, working with other solar professionals to install a solar-and-battery system in the isolated indigenous village of Mushuk Llamas.

 

Grant Neely, Our Man in Peru

Terapoto, Peru – Our team met two days ago in dry, coastal Lima then flew 250 miles north over the Andes and down here to this hub of San Martín Province, on the range’s damp, tropical side, where the solar equipment and supplies we shipped from the States awaited us.

The landscape here is verdant, bird-filled rainforest; jungle waterfall country where streams tumble from the hills, flowing into dozens of rivers that feed the Amazon. After packing our trucks, we’ll drive fifteen miles down the gorge of the Rio Huallaga to meet village leaders and start packing our solar components and supplies up mountain trails to Mushuk Llamas. Then the important work begins, building a power system!

Our team leaders have worked closely to understand the needs of the Mushuk Llamas community, designing a system that will bring the village lights, Internet access, and refrigeration for food and medicine for the first time. Children will be able to study at night; a small-scale coffee bean processing operation will become more productive; online education will become an active learning tool for everyone in the village.

Children of Mushuk Llamas

I always knew I wanted to work in remote places bringing solar power to people who need it most, so this is an incredibly exciting opportunity to make a big difference for this small village of indigenous Peruvians in the Amazon Basin.

As we see it, working in the solar industry brings an obligation to practice what we preach, using our skills to improve lives and to spread a technology that helps combat climate change every day. Northwest Renewables’ support for this Peru mission is an important step towards our active collaboration with local and regional partners, as well as to our industry’s commitment to renewable energy and its importance to our global family. 

Grant with Katie Martin of Imagine Energy and Zach Sippel of The Energy Trust of Oregon, enroute to Mushuk Llamas

For now, we’re into the project and out of touch for the next two weeks. I’ll post if I get back to Tarapoto for supplies in the meantime. Hasta luego!

 

You can support the Mushuk Llamas Project with a tax-deductible donation at twendesolar.org/grant.

Northwest Renewables Manager Electrifies a Village

NWR Project Manager Grant Neely

In coming weeks we’ll follow Northwest Renewables project manager Grant Neely on a remarkable adventure, bringing electricity and Internet access to the community center in the remote Peruvian native village of Mushuk Lamas.

For the project, Northwest Renewables is lending Grant to Portland-based solar charity Twende, which has electrified rural schools in Cambodia and Guatemala, along with doing major charity projects in the United States. We are proud to support Twende because, to us, solar power is more than a business; it’s also a cause, bringing the world desperately needed clean energy — and that is never more true than for electricity-starved communities like Mushuk Lamas.

In January Grant will join eleven other Twende volunteers in this coffee-growing village in the eastern Andean hills, where the Huallaga River flows from a steep canyon into the Amazon jungle. 25 indigenous families live here, speaking a unique blend of Andean Quechua and jungle Cahuapana, making their living from handcrafts and coffee, and guiding bird watchers and others who come to see the lush cloud forests of the surrounding Cordillera Escalera Conservation Area.

The coffee is the main thing. Picked on nearby hillside plantations, Mushuk Lamas’s beans are laboriously depulped, dried and peeled by hand, limiting both production and the villagers’ time for other work. With electricity, the coffee drying and peeling process can be automated, improving coffee quality and bringing the village more income.

With electricity, all of the village’s children can study at night — not only those whose families can afford expensive kerosene lamps and flashlights.

With electricity, villagers can refrigerate food.

With electricity, villagers can access the Internet via a wireless connection to nearby Tarapoto, using donated laptop computers the Twende volunteers will leave behind.

Soon, this electricity will come from 24 solar panels and a bank of  lithium-ion batteries installed by Twende — all of it carried miles up Andean mountainsides to the village, by backpack and burro. We look forward to seeing Grant return with quads the size of tree trunks!

Follow us as we keep you posted on Grant’s exciting venture.

Meanwhile, you can join the effort! Chip in a few dollars to help cover materials and expenses for the Mushuk Lamas project: twendesolar.org/grant.

 

 

The Basics of Going Solar

The Solar Age has clearly reached the Inland Northwest. Although the area has had a smattering of small solar projects for decades, the past two years have seen an explosion of new companies and larger systems. For a look at what is coming, just travel a bit — to almost anywhere. As costs drop and climate needs grow, solar is sweeping the world.

If you’re thinking of catching this wave, you now have a brief opportunity to make the move to solar with enormous help from the U.S. Government and the State of Washington, although you’ll need to move quickly.

Here are a few things to keep in mind when going solar yourself:

NOTE TO RECENT READERS OF THIS POST: ON FEBRUARY 1, 2019 THE WASHINGTON RENEWABLE ENERGY SYSTEM INCENTIVE PROGRAM CLOSED TO NEW APPLICANTS. HOWEVER, THIS DOES NOT AFFECT OTHER STATE AND FEDERAL INCENTIVES THAT ARE STILL FULLY AVAILABLE AS OF FEBRUARY 2019.

The Dollars and Cents
A typical suburban Spokane family home using around 15,000 kilowatt-hours per year will spend around $36,000 after taxes for a high-quality 12 kW system that cuts utility bills to nearly nothing. Given a sunny rooftop, 80% of that cost can be recovered with government incentives, leaving a net cost of $7,200—which lowered utility bills will equal in about seven years, with huge savings beyond. Better still, systems recoup most of their costs in improved property value the minute they are installed.

The basic drivers of financial return fall into five categories that, combined, typically recover system cost in short order and provide handsome savings for decades:

  1. The federal Investment Tax Credit: Pays 30% of your system’s cost, taken as a deduction on income tax. If that 30% of the system cost exceeds your taxes owed, you can save the remainder to deduct in the following year and possibly beyond.
  2. Washington State’s Renewable Energy System Incentive Program: Pays 50% of your system’s cost, or makes payments for eight years, whichever comes first. For a residence using Washington-made panels, you are paid in annual checks at the rate of 18 cents per kilowatt-hour for the power your system produces. NOTE: ON FEBRUARY 1, 2019 THIS PROGRAM CLOSED TO NEW APPLICANTS.
  3. Washington State’s Net Metering Program: Allows you to credit excess power fed to the grid against utility bills within the same fiscal year (which begins April 1), typically crediting high summer production against winter bills.
  4. Increased property value: National laboratory studies show that solar power systems typically recover most or all of their cost in higher property resale value.
  5. Protection against utility rate hikes: With utility rates rising over time at 2 percent or more annually, you can benefit by locking in lower costs with a system you own, especially if you plan to stay in your home for more than ten years.

As you see, it’s easy to confuse the two Washington State programs. However, they are very different incentives created at different times. The Renewable Energy System Incentive Program is a “production incentive” that pays you for all the power your system cranks out. The Net Metering Program is simply a law that commands utilities to credit you for excess electricity that you send back to the grid, using your summer surplus to cut your winter power bills.

Time is Running Short
Access to the state production incentives may indeed end soon. Once your system is certified, you lock-in the incentives outlined above, which pay up to half the cost of your system over eight years. But don’t delay; after ordering, it takes an average of six weeks to get a good system built and certified for the state production incentives. About 80% of the $110 million allocated by the legislature last year has now been reserved for projects, and access to the remainder probably won’t last more than a few months. August alone saw $10 million of these funds committed to new systems. The better installers are in demand, and it is likely that we’ll see a rush to build systems this fall. Although the legislature may renew these incentives next year, or funding may come through Initiative 1631 if that wins in November, those outcomes are very uncertain.

Even if the legislature renews funding, another deadline looms on June 30, when state production incentives for new systems drop from 18 cents to 15 per kilowatt-hour, if you use Washington-made modules, for systems certified after that date.

Meanwhile, the 30% Federal Investment Tax Credit for new systems remains in place, declining to to 26% in 2020.

No Batteries Required
Nearly all solar installations in metro Spokane are grid-tied, with no battery needed.

Why? Because Washington State financial incentives only pay for grid-tied systems, and because batteries remain costly. It appears that you can still capture the 30% Federal Investment Tax Credit if the battery is upstream from the inverter, but good, lithium-ion batteries for grid-connected home use still start at around $8,000, even after that incentive. Also, we have no time-of-use electricity pricing in our state, unlike California and New York where it pays to store power when it’s cheap and discharge your battery when power rates are higher during peak demand hours. In utility speak, this “demand response” pricing is much discussed, but no one knows when it will arrive here. Although one or two local companies build both on-grid and off-grid systems, most just stick to the grid because that’s where the state incentives are.

The Equipment 

  • Modules (aka “Panels”)
    • Nearly everyone in Washington uses ITEK 300s, because they are the only brand made in large quantities in Washington, and Washington State incentives pay you 4 cents per kilowatt-hour for power from panels made here. Bellingham-made ITEKs are quality products, warrantied 12 years for workmanship and 25 for power production (production degrades around 0.3% per year, so your modules are guaranteed to generate at least 80% of nameplate capacity at year 25).
  • Optimizers
    • These small, rugged processors attach to each module, regulating voltage, communicating with one another and the central inverter. They mitigate shade effects, so that if a couple of panels get shaded by a tree, that won’t fool the inverter into thinking that all modules should be throttled back to the same low production level—which used to be a serious concern for most systems.
  • Inverters
    • Because your modules produce direct current (DC) electricity, you’ll need an inverter to “invert” that to alternating current (AC) for your household use and for feeding the grid. Inverters come in two basic types: central and micro. One central inverter serves an entire system, versus microinverters that are installed in platoons spread throughout the rooftop array, one to every two modules.
    • Years ago, microinverters were popularized to handle the shade challenge mentioned above. However, all inverters are somewhat delicate—most have an expected life of around 15 years—so hardier optimizers have largely superseded microinverters on the rooftop, handling the basic shade mitigation and communications chores. Connected to that network of optimizers on the roof, the central inverter is kept in a more sheltered environment like a garage or an exterior wall. Then, when the time comes, a single central inverter on a garage wall is far easier to replace than dozens of microinverters dying one by one on a roof, each requiring costly disassembly of array sections.
    • Central inverter monitoring systems tend to be much better, reliably connecting to the cell phone network rather than trouble-prone wi-fi, so you can view your system’s performance any time on a richly featured app. And some central inverters even include electric vehicle fast-charging stations at minor additional cost, eliminating the need for multiple devices on your garage wall.
  • Racking Hardware
    • This is the catch-all term for all the rails, bolts, bars, clips, clamps and brackets that hold your modules in place on a roof or a ground stand. Often overlooked, these are actually very critical items that keep your system durable and your roof intact. Insist on the good stuff: solar-specific hardware from a reputable manufacturer. Good rails are built to secure wires for decades in special channels, with purpose-designed clips rather than breakage-prone zip ties in order to keep wires from falling loose and abrading against rough shingles or edges. Better rails are also anodized aluminum rather than steel, to reduce weight and strain on your roof.

At right: Fully flashed, bolted footings on a rooftop, ready for installation of rails and then modules. On common composite shingle roofs, full flashing kits are vital, keeping water off of roof-penetrating bolts and preventing leaks for the roof’s life. On good installations you’ll see footings attached to a metal square tucked into the shingles at every mounting point, carefully sealed and bound to the roof. 

The 12 kW Sweet Spot

For larger residential and small commercial buyers, 12 kilowatts is a common target for system size in Washington, because this is the maximum size eligible to receive state production incentives at the very attractive 18-cent residential rate; if you cross the 12 kW threshold your compensation drops to just 8 cents per kilowatt-hour as a “commercial-scale” system. 12 kW translates to 40 Washington-made ITEK 300-watt modules, each 5’6” x 3’4”, so it takes some roof space to accommodate a system this size.
What Makes a Roof Great For Solar?

You want an unshaded south-facing roof plane, although east and west facings are adequate, paying an 18% penalty in production. Forget about
north facings altogether.

Tilt matters less, and flat roofs are generally the only ones requiring stands to achieve the proper angle.

Shade from tall trees and neighboring buildings is a greater challenge. As much as we enviros hug our trees, don’t forget that they compete with you for solar energy. And, because solar power systems are designed to last 30 years or more, it’s important to evaluate not only the trees you have but also the trees they’ll become. That little fir or poplar in your south yard could soon be a sun-hogging monster, so this may be the time to replace it with a lower- growing tree such as a Japanese maple or any number of fruit varieties. A good rule of thumb is that a good solar site should have no shade between 9:00 am and 3:00 pm on a summer day

The Ground Game

If you have land, you may be thinking about putting solar modules on ground-mounted stands.

The usual reasons for ground mounting an array are cosmetics and size: some people just don’t like the look of solar panels on their roof; others need large arrays that won’t fit on a roof. It’s also nice to be able to brush off snow, although short, cloudy winter days make this less important than many think.

At the residential scale we aren’t often talking about robotic trackers that follow the sun, which require constant professional maintenance. Rather, we mean fixed-mount or adjustable arrays affixed to a steel framework. “Adjustable” means you can manually change the tilt a couple of times a year or more to capture up to 15% more energy.

The ideal candidate for a ground-mounted residential array would be someone who lives on acreage, with heavy annual electricity consumption of more than 30,000 kwh. Although some suburban mansions fit this description, the more usual case is a rural home with an electric heating system and outbuildings, where annual electricity needs can sometimes exceed 60,000 kwh (more than five times median household consumption).

However, ground mounting solar adds 15-40% to cost, and it generally requires a more sophisticated installer with real expertise in stand construction. You’ll also need to think about trenching for a buried cable connected to your electrical service panel, which can get costly with runs of more than 200’, due in part for the need to buy heavier wires to reduce line loss. So, you usually want an array site relatively close to your main electrical service panel. If the array is at all large, you may also need to upgrade that electrical panel.

That said, going large with a ground-mounted system can make excellent sense if you have high electric bills, especially if you plan to stay in the house for a decade or more.

The Biggest Decision You’ll Make in Solar

Many solar buyers tend to focus on the gear: “What kind of panels am I getting? What brand of inverter?”

To be sure, those are important considerations, but they skirt the larger issue: whom you hire for the installation. Solar installation is a fine craft that combines electrical expertise, carpentry, roofing, and the rapidly evolving discipline of system design. Nearly every installer in Washington installs ITEK 300 modules, but the way they install them varies widely, and those differences will matter a great deal in a decade or two. Did the installer use microinverters that are now failing one after another? Are unflashed roof bolts leaking moisture? Are cheaply built racking systems rusting? Are poorly secured wires popping loose and rubbing rough shingles?

A standard home rooftop installation takes at least a couple of days, not a couple of hours. It pays to look at an installers previous projects to check for good roof flashings, high-quality anodized racking gear (not the plain steel bars you see in things like shelving), and snugly secured wires.

NABCEP certification is a good indication that your installer knows their business. The North American Board of Certified Energy Professionals provides the country’s leading solar industry installer credential, requiring rigorous training and adherence to high standards. Northwest Renewables is one of extremely few Inland Northwest firms to achieve NABCEP certification.

-David Camp

 

Spokane Commits to 100% Renewable Electricity By 2030

Success!

As thick wildfire smoke blanketed Spokane in a poisonous pall last Monday, the City Council voted 6-1 before a packed chamber of supporters to move our city to 100 percent renewable electricity by 2030, and to run city operations entirely with renewable energy by 2020.

To accomplish these goals, a new city ordinance forms a Sustainability Action Committee charged with finding ways to achieve these goals along with improving Spokane’s resilience to climate change.

Spokane now joins 78 other U.S. cities in pledging to adopt renewable electricity from sources such as solar, wind, hydro and biomass, while leaving behind coal-fired and gas-fired power responsible for warming the climate and oceans.

Nora and Hope Henning testify in support of Spokane’s renewable energy ordinance.

Although the Ordinance defines the transition to 100 percent renewable electricity as, “an aspirational strategic goal” rather than as a firm requirement, that change bought acceptance by a powerful ally: Avista, the area’s largest electric utility. In Monday’s meeting, Avista executive Bruce Howard endorsed the measure, saying, ““We support growing our use of renewable energy in a timeframe and through approaches such as the advancement of energy storage that continue to provide reliable, affordable service.”

Several Council Members also praised the close collaboration between city leaders, activists, businesses and utility interests.

Numerous environmental and social justice organizations voiced support, largely led by 350 Spokane, the local climate activism group that originally championed the idea with its Fossil Free Spokane campaign. Other supporting groups include The Lands Council, Upper Columbia River Sierra Club, Sisters of St. Francis of Philadelphia, Pax Christi Spokane, St. Clare’s Ecumenical Catholic Community,  Unitarian Universalist Church of Spokane, Westminster Congregational United Church, Spokane NAACP, Spokane Independent Metro Business Alliance, Spokane Riverkeeper, The Center for Justice, Citizens Climate Lobby, and Washington Physicians for Social Responsibility.

The new 11-member Sustainability Action Commission will reflect this diversity, including utility representatives, low-income citizens, public health interests, local businesses and environmental groups, among others. They will be charged with analyzing costs related to the Ordinance–including the costs of not meeting its goals.

All of which makes this an exciting time for those of us in Spokane’s growing renewable energy industry. As several citizens testified Monday night, studies show that Spokane already has 260 jobs in solar power, with another 157 next door in Kootenai County, and “Wind turbine technician” is the nation’s fastest-growing occupation. These industries provide America’s fastest growing family-wage, blue-collar job opportunities while also helping solve the world’s most pressing challenge: climate change.

At Northwest Renewables we are excited to be part of this movement and thrilled to be located in Spokane, the latest addition to the long list of American cities committed to renewable electricity!

On the Competition in Eastern Washington’s Solar Industry

With Washington State’s updating of its Solar Production Incentives, and with accelerated efficiencies in the solar panel and solar installation industry, Spokane and Eastern Washington’s Residential Solar Marketplace is beginning to spawn increased competitiveness.  Northwest Renewables welcomes this competition and embraces the opportunity to differentiate our high-quality, affordable solar installs from our peers’.  This blog post is intended to highlight those differences:

Bait-and-Switch Predatory Solar Salesmanship:  Are you in communication with a Solar Installer offering a Free Year of Solar, or free cash in the form of a big rebate or money back?  This old as the hills tactic is a simple bait-and-switch leaving you with a costlier bill for your Solar Array.  Adding a Free Year of Solar simply adds to your purchase price.  Should you on your good credit be financing your installation, this pushes your Solar Array’s Return-On-Investment out 4-5 years!

These installers will produce Contracts for you, the Homeowner, to sign and agree to WITHOUT EVEN VISITING YOUR HOME.  They can be confident that they are not losing money on your particular Solar Installation given that they have deliberately elevated their prices, but their overpricing significantly depletes the value of your net-metered Solar Electricity.

Recently Northwest Renewables learned of a Homeowner who had signed such a contract believing they were simply scheduling a site visit.  This Homeowner then confronted the Predator who would not explain why its price was so much higher and would not allow the homeowner to cancel.

Do not sign anything with Predatory Installers offering a Free Year of Solar, free cash, big rebates or money back without first contacting Northwest Renewables to receive a professional quote from a local Solar Installer who does not lure homeowners with such unsavory practices.

Regarding Electrical Contractors Learning a New Craft:  Electrical Contractors now plying their trade in Solar have a lot to learn as the installation of Solar is truly a blend of three trades, Roofing, Carpentry and Electrical, while Solar Design is a new craft all to itself.

Ask yourself: Do you want your Solar Installation built by an Electrical Contractor who is an expert in only one of these categories, but is missing the design tools, and the skill in roofing and disciplined carpentry necessary to produce a high-quality Solar Installation?

The fact is that the Electrical trade on its own simply does not prepare an Electrical Trainee for the Solar Industry.  Solar is a fast-moving industry, and Solar Specialists are keeping current on changes to incentive structures and new products, while maintaining sharp Solar-Specific skills.

Before signing up for a Solar Installation with an Electrical Contractor who does some solar on the side, contact Northwest Renewables and receive a professional quote from a Solar Installer specializing in the design and installation of Solar Energy Systems.

We at Northwest Renewables are committed to installing high-quality Solar Arrays for a fair price.  Our quotes are simple to understand, and clearly explain the pay-back-period for your investment in Solar Energy.  The Solar Installers working here are professionals in this new and growing industry, not Electricians cross-training in something outside their comfort zone.  Contact us today to schedule a site visit and receive your quote from Spokane and Eastern Washington’s local Solar Expert.

-Gavin Tenold

On Current and Changing Technology in Solar Power

With regularity we at Northwest Renewables are asked about state-of-the art developments in solar power, and about research teams scrambling to build more efficient and utilitarian solar technologies such as thin-film and integral solar roofing shingles.  Our residential and commercial solar work though primarily focuses on monocrystalline and polycrystalline solar panels as these are the dominate products available in the North American market.

Crystalline silicon is the base material for both monocrystalline and polycrystalline solar power panels.  Both products start as a silicon crystal ‘seed’ which is placed within a vat of molten silicon.  From there ‘mono’ crystalline is slowly removed from the vat, and ‘poly’ crystalline is simply allowed to cool.

Previously thought to be inferior, polycrystalline cells have become the dominant technology in the marketplace due to a less costly manufacturing process.  While slightly less space efficient than monocrystalline, on large solar power projects without space constraints polycrystalline panels certainly deserve consideration during a solar design.  These larger projects can generally afford the expense of additional panels to equal solar production and do so with considerably less cost.

Presently in Washington State where much of Northwest Renewables work is done, residential solar power installations are largely utilizing made-in-Washington monocrystalline panels and capitalizing on Washington state’s solar production incentives.  In coming years as these state incentives decrease and polycrystalline continues to improve, we may begin to move some of our residential installations over to poly.

Lastly, as the state-of-the art continues to improve we at Northwest Renewables remain committed to thoughtfully analyzing each project’s unique criteria, and NWR will adopt such technological developments when the time is right.

– Gavin Tenold

Design for Optimal Indoor Air Quality

Clean air is a primary metabolic need for humans, yet Indoor Air Quality (IAQ) is an overlooked part of our indoor built environment.  A recent study performed at the Harvard T.H. Chan School of Public Health sheds light on the enormous affect IAQ has on our health and productivity.  Given that 90% of our time is spent indoors, it is time to prioritize IAQ in your home and commercial property.

The Harvard T.H Chan COGfx Study demonstrated that improved Indoor Air Quality doubled the cognitive functioning of building occupants.  The performance of study participants averaged 101 percent higher in buildings with enhanced ventilation compared to those in conventional buildings. Crisis response, information usage and strategy were the categories with the largest improvements in cognitive function.  In dollars and cents, the team demonstrated that on a commercial property this works out to an investment of between $1 to $40 per person per year yielding $6,500 in improved productivity per person per year.

Ask yourself: “Would I want my employees or my family to respond to crises in a more effective way?”  According to the COGfx study, crisis response scores are 131 percent higher in buildings with high Indoor Air Quality.

Ask yourself: “Is utilizing information important to my workplace and family?”  According to the COGfx study information usage scores are 299 percent higher than in buildings with high Indoor Air Quality.

And ask yourself: “Is it important to have my employees and family thinking strategically?”  COGfx scores on simply strategy tests were 288 percent higher in buildings with high Indoor Air Quality.

Northwest Renewables offers two primary turnkey solutions, Energy Recovery Ventilators and ductless minisplits, for creating and maintaining optimal Indoor Air Quality in a new-construction or retrofit situation.  Each system offers the occupant the ability to easily clean their ventilation system without the need for a service call, and more importantly each system minimizes or eliminates dust, allergen and VOC trapping duct-work.

In the end the COGfx study is yet another story of false dilemmas, whereby our society’s focus on project and operating cost leads to a code-defined “acceptable indoor air quality.”  This acceptable level has in-fact been hamstringing our potential, and is far from desirable.  Let’s begin designing for our potential.  That potential requires Optimal Indoor Air Quality.

–Gavin Tenold